Никто не идет в физику элементарных частиц, надеясь, что это будет легко. Наоборот, многих студентов этот предмет привлекает именно своей сложностью. Но если вы проходите через все это, то рассчитываете обнаружить нечто, окупающее ваши усилия. Но оно не обнаруживается. Эти десятки тысяч слагаемых в конечном счете сокращаются всего до четырех. Остальные взаимно уничтожаются. Слагаемое номер 2718 может, при ближайшем рассмотрении, оказаться таким же, как слагаемое номер 3142, но со знаком «минус» перед ним, поэтому они оба сокращаются. К сожалению, нельзя сказать заранее, какие слагаемые сократятся, так что нужно выписывать их все. Процедура кажется извращенно бессмысленной, немногим лучше исписывания доски в качестве наказания после уроков в школе. Несоответствие между трудностью вычислений и простотой ответа свидетельствует о том, что физики что-то упускают, как капитан полиции, который задерживает простых подозреваемых и не замечает парня с пистолетом в руке.
Одногруппники Берна выбросили из головы это адское домашнее задание, но он так и не смирился с ним. Он полагал, что должен существовать более удобный способ выполнения этих вычислений, и с головой погрузился в его поиски. Это было не самое умное решение в карьерном плане. Большинство физиков считали подобные вычисления работой подмастерья: полезной, но не требующей воображения. Потенциальные работодатели не посещали доклады Берна; один журнал отклонил его первую статью на эту тему как «не очень интересную». Прорыв произошел, когда Берн сделал доклад в Принстоне, и Виттен, известный струнный теоретик, благодаря которому Гиддингс передумал уходить из физики, подошел к нему после доклада, чтобы похвалить. После такого знака внимания Берн наконец получил работу. По его словам, такой опыт освобождает от юношеских романтических представлений о науке. «Наука делается не так, как я думал, — говорит он. — Я открыл, что в науке удача должна быть на вашей стороне».
Благодаря усилиям Берна и его коллег физикам больше не нужно выписывать те десять с лишним тысяч алгебраических членов, а можно сразу перейти к конечным четырем. Но почему старые методы были настолько неудачны и почему эти новые методы работают так хорошо? Другой теоретик, Нима Аркани-Хамед в Институте перспективных исследований в Принстоне, видит причину в нелокальности. Физики-теоретики известны силой характера, но Аркани-Хамед — это стихия. Он родился в Хьюстоне в 1972 г. Несколько лет спустя его отец, видный иранский геофизик, перевез семейство обратно в Тегеран, чтобы помочь в строительстве новой страны после падения шаха. Идеализм семейства быстро рассеялся. Они слишком часто критиковали аятолл, начали скрываться, чтобы избежать ареста и вероятной расправы, и спаслись бегством через турецкую границу верхом на лошадях.
Многие физики говорят, что они «взволнованы» тем или иным открытием. Но говорят это так безэмоционально, что нельзя не удивляться: если они ведут себя так, когда взволнованны, насколько ужасно должно быть, когда им скучно. Аркани-Хамед, напротив, говорит о самых простых вещах с таким воодушевлением, что кажется, он только что открыл потерянный ковчег Завета. Однажды он заставил меня восхищаться тем, что строка «1, 2, 3» может быть переписана как «3, 1, 2» или «2, 3, 1», демонстрируя, как много в физике сводится к тщательному подсчету возможных перестановок. Я помню, как стоял рядом с ним в перерыве конференции с чашкой кофе (похоже, всегда в его присутствии пьют много кофе), когда разговор превратился в стремительный внутренний диалог, в котором Аркани-Хамед давал сам себе ответы, в то время как остальные все еще пытались понять вопросы: «Я сделал это, я попробовал то, но это не сработало, но — о, погодите, возможно дело в том, — значит, мм, интересно, следует ли мне…»
«Физика никогда в жизни не внушала мне большего энтузиазма, — выпалил он, когда я впервые поинтересовался новыми методами вычисления. — Происходит что-то действительно захватывающее, я думаю, это могло бы в конечном счете изменить наши представления как о пространстве-времени, так и о квантовой механике… Все это стремительно развивается прямо сейчас благодаря группе порядка 15 человек во всем мире, работающих над этим день и ночь». В 2013 г. их усилия увенчались созданием полноценной альтернативы диаграммам Фейнмана.
Аркани-Хамед считает, что проблема диаграмм Фейнмана в их нарочитой локальности. Они изображают частицы взаимодействующими друг с другом в определенных положениях в пространстве и времени. Диаграммы выглядят обнадеживающе похожими на следы частиц, которые они оставляют в детекторе вроде пластикового стакана у меня в подвале. Именно поэтому физиков и привлек подход Фейнмана. И все же трясина вычислений создает этому свойству диаграмм дурную славу. Локальность напрямую ответственна за появление огромного количества алгебраических членов в расчетах. «Раз вы настаиваете на том, что теория локальна, — говорит Аркани-Хамед, — то в наказание получаете десяток тысяч слагаемых». Считая каждую точку пространства строго независимой от всех остальных, метод Фейнмана преувеличивает сложность мира. Большая часть того, что появляется на диаграммах, не существует в реальном мире, например «виртуальные» частицы и «духовые» поля. Теоретикам приходится вводить специальные правила, чтобы убедиться, что эти незваные гости не останутся на десерт.
Вместо того чтобы считать локальность отправной точкой, Аркани-Хамед, Берн и их коллеги предполагают, что частицы удовлетворяют определенным законам симметрии, и в результате уравнения получаются намного более простыми. Частицы все равно подчиняются принципу локальности, единственная разница в том, что эта теория получает локальность из более глубоких соображений, вместо того чтобы требовать ее в качестве предварительного условия. Такой подход сочетает скромность с великим замыслом. Эти теоретики не намеревались создавать новую теорию частиц, а просто хотели оптимизировать уже существующую. Их уравнения не предсказывают ничего экзотического, а только облегчают описание того, что мы уже знали.