Нелокальность - Страница 37


К оглавлению

37

В их защиту скажу, что поиск причин случайных капризов жизни неизбежно ведет к расстройству. Некоторые вещи просто происходят. Добродетельные люди терпят неудачи, а грешники процветают. Для сторонников копенгагенской интерпретации индетерминизм был уроком современности, противоядием от неуместной веры в здравый смысл родом из эпохи Просвещения, которую многие немецкие интеллектуалы 1920-х гг. считали ответственной за поражение их страны во время Первой мировой войны. Многие историки полагали, что это культурное настроение восходит к вере времен магического мышления и романтизма в то, что природа не подвластна рациональному пониманию.

Эйнштейн и Шрёдингер питали отвращение к такому толкованию квантовой механики. Бог не играет в кости, как сказал Эйнштейн. Это знаменитое и часто цитируемое высказывание звучит так, как если бы у Эйнштейна было религиозное отвращение к индетерминизму. Истина, как всегда, гораздо сложнее и интереснее. Эйнштейн никогда не возражал против случайности как таковой — он потратил большую часть своей карьеры, изучая вероятностные процессы. Его опасения были более прагматичны. Другие вероятностные явления были следствием механических движений более мелкого масштаба. Почему с квантовой случайностью дело должно было обстоять иначе? Почему физики должны оставить поиски более глубокого уровня устройства природы? Как я упоминал в одной из предыдущих глав, Эйнштейна поражал тот факт, что Вселенная постижима во многих отношениях, и он считал, что было бы странно видеть исключение в частицах. Вселенная должна быть либо постижимой, либо непостижимой, а не наполовину постижимой и наполовину непостижимой одновременно.

Кроме того, Эйнштейн понимал, что индетерминизм повлечет за собой нелокальность. Причина состоит в том, что якобы случайные события в квантовой механике скоординированы. Мы не только наблюдаем, что они скоординированы, но они должны быть скоординированы, иначе какое-то количество энергии или импульса будет теряться или, наоборот, приобретаться. Например, те волшебные монеты, о которых я говорил в первой главе, выпадают произвольным образом орлом или решкой, но делают это жестко синхронно. Как они это делают? Если результат броска определяется на лету, монеты должны общаться нелокальным образом, чтобы гарантированно падать одинаково. И наоборот, если они не общаются, то результат должен быть предопределен, и квантовая теория, будучи не в состоянии точно предсказать этот результат, должна быть неполной. В течение многих лет Эйнштейн продолжал работать над этой дилеммой между индетерминизмом с нелокальностью и детерминизмом с локальностью.

Дебаты 1927 г.

Первый раз Эйнштейн представил свою дилемму миру в октябре 1927 г. на конференции, которая считается одной из самых величайших встреч в истории физики. Фонд, основанный бельгийским промышленным магнатом Эрнестом Сольве, взял на себя все расходы, чтобы 28 изысканно одетых мужчин и одна элегантная дама провели неделю в шикарном отеле, читая в институте Брюсселя лекции о квантовой механике (которые после этого были опубликованы) и общаясь друг с другом в неформальной обстановке (протоколы не велись, чтобы никто не чувствовал себя скованно). Эйнштейн не представил собственного доклада, но изложил свои доводы против копенгагенской интерпретации, когда одному из докладчиков задавали вопросы.

Его аргументом была обновленная версия парадокса пузыря. Квантовая волновая функция распространяется в пространстве как расширяющийся пузырь, однако частица, которую она представляет, появляется только в одном определенном месте, если вы начнете ее искать. Что заставляет пузырь лопнуть? Что мешает частице появиться в нескольких местах? Что-то должно управлять коллапсом, чтобы частица гарантированно материализовалась в одном, и только одном месте. Тем не менее в этом сценарии не задействована никакая сила — ни электричество, ни магнетизм, ни тяготение. Да никакие силы и не могли быть в нем задействованы, поскольку эффект происходит мгновенно и потенциально на бесконечном расстоянии. Этот эффект должен быть нелокальным; он должен противоречить теории относительности. На Сольвеевском конгрессе Эйнштейн выразил это следующим образом: «Вероятность того, что эта частица будет найдена в данной точке, предполагает наличие исключительно необычного механизма действия на расстоянии, который мешал бы волне, непрерывно распределенной в пространстве, действовать в двух местах». Такое действие на расстоянии, сказал он коллегам, «подразумевает, по моему мнению, противоречие постулату относительности».

С точки зрения Эйнштейна, естественным было отказаться от пузыря, который лопается, оставляя после себя частицу. Вместо этого частица должна сидеть и ждать в том месте, где ее находят. Никакой нелокальной координации не нужно. Эту возможность иногда называют «реализмом», потому что у частицы в действительности всегда есть определенное положение, даже если квантовая теория не может сказать, где оно. Положение частицы — это то, что физики называют «скрытым параметром»: «скрытым» в том смысле, что он не появляется в уравнениях Шрёдингера и Гейзенберга. Более полная теория должна включать такую переменную. Эйнштейн пытался придумать такую теорию, основанную на его более ранних идеях о направляющем поле, и французский физик Луи де Бройль представил такую модель на Сольвеевском конгрессе. «Я думаю, что мистер де Бройль правильно делает, что ищет в этом направлении», — сказал Эйнштейн.

37